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LETTER TO "HE EDITOR 

Calculation of the density of states using discrete variable 
representation and Toeplitz matrices 

Eli Eisenbergtf, Asher Baramt and Michael Baerf 
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t Department of Physics, Bar-Ilan University. Ramat-Gan 52900, Israel 

Received 11 May 1995 

Abstract A direct and exact method for calculating the density of states for systems with 
localized potentials is presented. The method is based on explicit inversion of the operamr 
E - H..,pe operator is written in the discrete variable representation of the Hamiltonian, and 
the Toeplia property of the asymptotic part of the infmite thus obtained matrix is used. Thus, 
the problem is reduced to the inversion of afvize matrix. 

The evaluation of the density of states, has been iuidely discussed for various  physical 
systems in condensed, matter and chemical physics [l-31. In particular, one is interested 
in the exsistence of resonances, and their position and width. In the field of chemical 
physics, resonances play a role in electron-atom, and atom-molecule scattering processes, 
autoionization, associative detachment, dissociative attichment, and similar molecular 
resonant reactions [ I ,  41. Recently, the subject of resonant tunnelling in semiconductors 
doublebarrier structures has also been the subject of feverish activity [2j,'due to the 
technological intereit of the properties of such structures, e.g. negative differential resistance 
and bistability in current-voltage response. 

The common methods for finding the position of resonances are the complex scaling 
method [3] and the stabilization method [4,5]. The complex skiing method, pioneered 
by the works of Aguilar, Balsve and Combes~ [6], and Simon [7] involves the analytic 
continuation. ,of the energy into the complex plane using the transformation r 4 do, 
through diagonalization of the scaled (non-Hermitian) Hamiltonian. The following complex 
eigenvalues correspond to the resonant states, where the real part is the resonance energy, 
and the imaginary part is the life-time. The method was modified and extensively used 
by Certain, Moiseyev and co-workers [8], and has recently been applied to three body 
problems [9]. However, this method does not give the full density of states as a function of 
energy. Only an approximated form can be obtained through me sum of he Breit-Wigner 
functions of each resonance. 

n e  stabilization method was developed in quantum chemistry for problems involving 
electron-atom and electronmolecule scattering. The basic idea is to repeatedly diagonalize 
the Hamiltonian in the basis sets of ever larger extension L,  from what is,believed to be the 
region where the resonance wavefunction is localized. The result is a stabilization diagram 
of the eigenenergies Ej(L)  versus L (see an example in figure 1 later). The characteristic 
plateaux which contain the pattern of avoided crossings between stable (with respect to 
L) and unstable eigenvalues, where the former correspond to the eigenvalues representing 
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resonances, and the latter to discretized continuum states. Briefly, the explanation of this 
method is as follows [lo]. The wavefunctions for energies near the resonant energy are 
highly localized, and thus are very well described by the finite Lz states. Therefore, they are 
stable with respect to changes in the range of the basis functions. In contrast, eigenvalues 
far from resonance correspond to extended states, and feel the modifications of the basis 
set. Thus, they will vary as L changes. 

Some methods have been suggested for deriving the resonance parameters from the 
stabilization method [11-13]. More recently, Mandelshtam et a1 [I41 have shown how the 
full density of states can be obtained using some kind of averaging over the parameter 
L. This method has been used for dissociative photoabsorbtion problems [15], for the 
calculation of microcanonical and canonical rate constants for one-dimensional [16] and 
*body collinear problems [17], and for resonant tunnelling-time calculations [IS]. A 
comparison of the above two methods is given in [19]. 

However, one would like to have a more direct way to calculate the density of 
states, without applying analytic continuation methods, or (somewhat artificial) averaging 
processes. For instance, the textbook definition of the density of states is 

, ,  , I  

(1) 
1 ??L 

p ( E )  = TrS(E - H) = - -hTrG(E) 
K 

where H is the Hamiltonian, and G is the (full) outgoing Green function defined via 
G ( E )  = (E + ik - A clear and simple derivation would be the evaluation of the 
Green function through the inversion of the matrix representing the operator E - H in some 
L2 basis set. Unfortunately, this naive approach is not directly applicable, since the physical 
systems in which resonant states occur are, in nature, of infinite extent, and accordingly, 
the matrices involved are infinite. A solution for this problem was given by Seideman and 
Miller [20], who applied the method of negative imaginary potentials as absorbing boundary 
conditions [21] to deal with the infinite asymptotes. 

In this letter, we present an alternative approach for the above problem. We manage 
to invert the infinite matrix E - H without applying to any truncations (A is done in the 
stabilization method) or imposing unphysical boundary conditions. This is accomplished 
using the discrete variable representation (DVR) [22-241 in which the asyptotic parts are 
well separated from the interaction region. It has been already recognized [25] that the 
asymptotic part of this matrix has a Toeplitz structure [26]. This structure is used here 
to reduce the problem to the inversion of a finite matrix whose dimension is proportional 
to the width of the interaction region. The only parameter in this method is the spacing 
U between successive grid points of the DVR. We apply the method to two double-barrier 
problem, with parameter sets corresponding to typical mesoscopic resonant tunnelling and 
chemical reaction problems, respectively. 

The essence of our method is that of employing the finite range of the potential through 
the separation between the asymptotic regions and the interaction region. In order to 
keep this separation, a localized basis set is desirable. Apparently, the most appropriate 
representation from this point of view is the DVR, in which the potential operator is diagonal. 
The representation of the kinetic energy part of the Hamiltonian is calculated through the 
infinite order grid point representation of the second derivative, and is (for an equally spaced 
grid) of the form [24] 

i = j  
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where m is the mass. The corresponding Green function is thus given through 

(G-l).. U - ' (E - - V ( ~ i ) ) & j  - zj (3) 
where the points x. = RU are the basis grid points. In what follows we use only the 
outgoing Green  function, and thus E has to be understood as E + ie. 

We now look at the perturbative representation of G: 

G = Go + GoVGo + GoVGoVGo +~. . . = SGo (4) 

where 
m 

S = C ( G o V ) " .  (5) 
"=O 

In what follows, we use a block-form in which the vectors (which correspond to 
wavefunctions) are represented by threedimensional super-vectors whose first (third) 
component corresponds to the left (right) asymptotic part of the vector (and is therefore 
an infinitedimensional vector), and its second component corresponds to the interaction 
region (and is thus finite-dimensional). Accordingly, the matrices are represented by 3 x 3 
super-matrices. In this notation, the potential matrix can be written (we use bold to indicate 
super-matrix elements, to stress that these are matrices themselves) as, 

v = ( ;  v; ;). (6) 
0 0 0  

Similarily, one can write the operator GoV as 

0 Gy2V22 
GoV= 0 Gi2Vu 0 . (7) ( 0 G!2V22 :) . .  

(1  f 1) 
Since this matrix has zero (first and third) columns, so does all its powers. One thus may 
write 

S =  0 B + I  0 (8) 

where the I operators are the identity operators of the appropriate order for each block. 
It is easy to see from the definition of S, that it satisfies the equation 

s - I = G%. (9) 

(10) 

(11) 

(12) 

(13) 
and consequently A, C ace given by (lo), (12). Note that the matrix I - Gi2Vz isfinite, 
and thus its inversion is a simple numerical problem. 

Explicit multiplication, and comparing term by term, gives the following relations: 

A = G$V22(I + B) 

B = Gi2Vi2(I + B) 
C = G!zV~(I  4- E). 

B = (I - G$V~VU)-'G$VZ 

The solution of these relations is given by 
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Using (4), the trace of G is easily obtained. One has 

Tr(G - Go) = Tr(AG:,)+ Tr(BGk) + Tr(CG&). (14) 

The evaluation of the second trace involves simply a finite summation; however, the two 
other traces are infinite sums. We will now show that by using the explicit form of Go 
these sums can be reduced to finite ones. 

For this purpose we now calculate the DVR form of Go. By definition 

Go = ( E  - T)-' (15) 

where T stands for the kinetic energy operator. Using DVR, the matrix E - T has the 
structure of a Toeplitz matrix, i.e. ( E  - T)i j  =ti-,, where 

The eigenvalues and eigenvectors are thus given by 

where q is a continuous index in the region --K < q e R t .  The inverse matrix is thus 
given by 

where 01' = -(uk)' - is, and k is the wavenumber corresponding to the energy E .  The 
integrand is highly peaked around q = 1011, and therefore, whenever 1011 < n and this peak 
is inside the integration region, one can extend the integration region to infinity and obtain 

where B = uk. The condition B < R means that the number of grid points per (free) 
wavelength is > 2. This is a relatively sparse grid compared with those used in usual DVR 
applications. 

The free particle density of states per unit length is obtained from (20) as 

Substituting (20) in (14), the infinite sums reduce to geometric series, and one obtains 
the formula 

t This (exact) result cm also be derived as the N --f m limit of the s p e "  of afulire Toeplitz matrix, given 
in 1271. 



Letter to the Editor L437 

2on.o 

Figure 1. The resonant part of the density of states, i.e. Ap(E)  = p ( E ) - p o ( E )  for the potential 
(23). The full curve corresponds to our results, and the dotted one is the best Lorentzim fit. 
The parameters used are Vn = 0.5 eV, xg = 50 A,  OL =,4 x and m* = 0.041m.. 
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Figure 2. As figure 1, but with parameters Vo = 0.5 eV, xn = 0.2 A, OL = 50 A-Z and m = mp. 

where no (q) is the first point of the left (right) asymptotic region. Thus, after inverting 
the matrix B +I, all that one has to do is to sum according to (22). 

As an example, we consider~here a (symmetric) double-barrier structure, typical of the 
problems treated in mesoscopic resonant tunnelling problems [ 181. The potential is of the 
form 

(23) ~ ( x )  = va(exp(a(x - ~0)') + exp(a(x + ~ 0 ) ' ) ) .  

The parameters used are Vn = 0.5 eV, xo = 50 A and a = 4 x A-' (corresponding to a 
quantum well of width'- 60 A, with barriers of width - 40 A). The mass is mx = 0.041 me, 
corresponding to the Gao,.+7Ino.s3As .well. Figure 1 shows the full density of states, as 
calculated from (22). The resulting l i e  shape is a Lorenzian centred at Eo = 0.101 180 eV 
whose half-width is r/2 = 1.771 27 x W 3  eV. Figure 2 presents the same graph for 
the same potential with set of parameters suitable for a chemical physics problem, i.e. 
Vo = 0.5 eV, xo = 0.2 A, a = 50 A-* and m = mp. The resulting line shape is a Lorenzian 
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centred at Eo = 0.305 9235 eV whose half-width is r/2 = 3.994 96 x 
In conclusion, a direct and exact method for the calculation of the density of states for 

localized-potential systems has been derived. The method evaluates the inverse of the matrix 
representing the operator E- H in the DVR, employing its asymptotic Toeplitz structure. As 
usual in DVR treatments, no integration is needed in constructing the matrix elements. The 
numerical effort needed involves only the inversion of one matrix (for each energy) whose 
dimensionality is proportional to the range of the interaction region. We have considered an 
explicit example of a one-dimensional double-hanier structure, typical of those considered 
in the field of resonant tunnelling. However, the derivation is completely general and can 
be applied also to more complicated (e.g. threebody, three-dimensional) problems. 

eV. 
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